221 research outputs found

    The relationship between students' views of the nature of science and their views of the nature of scientific measurement

    Full text link
    The present study explores the relationship between students’ views on the nature of science (NOS) and their views of the nature of scientific measurement. A questionnaire with two-tier diagnostic multiple choice items on both the NOS and measurement was administered to 179 first year physics students with diverse school experiences. Students’ views on the NOS were classified into four ‘NOS profiles’ and views on measurement were classified according to either the point or set paradigms. The findings show that students with a NOS profile which is dominated by a belief that the laws of nature are to be discovered by scientists, are more likely to have a view of the nature of scientific measurement characterised by a belief in ‘true’ values. On the other hand, students who believe that scientific theories are inventions of scientists, constructed from observations which are then validated through further experimentation, are more likely to have a view of the nature of scientific measurement which is underpinned by the uncertain nature of scientific evidence. The implications for teaching scientific measurement at tertiary level are discussed

    Teaching Robust Argumentation Informed by the Nature of Science to Support Social Justice. Experiences from Two Projects in Lower Secondary Schools in Norway

    Get PDF
    Under embargo until: 2022-09-09This chapter suggests a set of design principles for science curricula that will enable students to produce evidence-based arguments expressing views related to their own interests. It is based on the assumption that the ability to construct evidence-based arguments strengthens students’ ability to promote their own views in the interest of social justice. This is of special importance for students not enculturated into such argumentation through their upbringing. To promote one’s own views in a debate means to critique others’ arguments, and especially to ensure one’s own arguments are resistent to criticism. Insight into the nature of science includes insights in how to construct sound arguments based on facts and research results. The discussion of design principles is based on an analysis of two science projects in two lower secondary schools in Norway (Grade 8). In the first project, students produced scientific claims based on evidence from their own practical experiments. In the second project, the students developed and applied a method for estimating energy use and carbon dioxide (CO2) emissions. The students used their findings to construct arguments related to local transport plans. The analysis focuses on challenges and successes in scaffolding students at different competence levels to successfully produce evidence-based arguments.acceptedVersio

    Learning to Teach About Ideas and Evidence in Science : The Student Teacher as Change Agent

    Get PDF
    A collaborative curriculum development project was set up to address the lack of good examples of teaching about ideas and evidence and the nature of science encountered by student teachers training to teach in the age range 11-16 in schools in England. Student and teacher-mentor pairs devised, taught and evaluated novel lessons and approaches. The project design required increasing levels of critique through cycles of teaching, evaluation and revision of lessons. Data were gathered from interviews and students' reports to assess the impact of the project on student teachers and to what extent any influences survived when they gained their first teaching posts. A significant outcome was the perception of teaching shifting from the delivery of standard lessons in prescribed ways to endeavours demanding creativity and decision-making. Although school-based factors limited newly qualified teachers' chances to use new lessons and approaches and therefore act as change-agents in schools, the ability to critique curriculum materials and the recognition of the need to create space for professional dialogue were durable gains

    El Conocimiento DidĂĄctico del Contenido en ciencias: estado de la cuestiĂłn

    Get PDF
    This paper gives a descriptive overview of the literature related to Pedagogical Content Knowledge - PCK - in the sciences. It is expected that this review can contribute to a better understanding of PCK, pointing out what has been investigated about this concept. Specifically, we analyze: a) how PCK is defined, what are its main features and how it has been appropriated by teachers; b) the relationship between PCK, knowledge of the contents to be taught and students learning; c) how PCK was actually used in teachers' training and teachers' evaluation; and, d) the scientific areas in which PCK has been studied. It concludes that PCK is an essential tool for improving the quality of teacher training

    Opportunities and challenges of China’s inquiry-based education reform in middle and high schools: Perspectives of science teachers and teacher educators

    Full text link
    Consistent with international trends, an emergent interest in inquiry-based science teaching and learning in K-12 schools is also occurring in China. This study investigates the possibilities for and the barriers to enactment of inquiry-based science education in Chinese schools. Altogether 220 Chinese science teachers, science teacher educators and researchers (primarily from the field of chemistry education) participated in this study in August 2001. Participants represented 13 cities and provinces in China. We administered two questionnaires, one preceding and one following a 3-hour presentation by a US science educator and researcher about inquiry-based teaching and learning theories and practices. In each of three sites in which the study was conducted (Shanghai, Guangzhou and Beijing), questionnaires were administered, and four representative participants were interviewed. Our coding and analysis of quantifiable questionnaire responses (using a Likert scale), of open-ended responses, and of interview transcripts revealed enthusiastic interest in incorporating inquiry-based teaching and learning approaches in Chinese schools. However, Chinese educators face several challenges: (a) the national college entrance exam needs to align with the goals of inquiry-based teaching; (b) systemic reform needs to happen in order for inquiry-based science to be beneficial to students, including a change in the curriculum, curriculum materials, relevant resources, and teacher professional development; (c) class size needs to be reduced; and (d) an equitable distribution of resources in urban and rural schools needs to occur.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42933/1/10763_2005_Article_1517.pd
    • 

    corecore